ISRAEL JOURNAL OF MATHEMATICS, Vol. 31, No. 2, 1978

LOWER BOUNDS AT INFINITY OF SOLUTIONS
OF PARTIAL DIFFERENTIAL EQUATIONS
IN THE EXTERIOR OF A PROPER CONE

BY
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ABSTRACT

An extension of a classical theorem of Rellich to the exterior of a closed proper
convex cone is proved: Let I be a closed convex proper cone in R” and ~I” be
the antipodes of the dual cone of I. Let P=P(-id/ox)=
Q(—ia/ax)T}-, P,(—id/ax)™ be a partial differential operator with constant
coefficients in R", where Q({)#0 on R"—il" and P, is an irreducible
polynomial with real coefficients. Assume that the closure of each connected
component of the set {{ ER" —il'"; P,({)=0, grad P;({)# 0} contains some
real point on which grad P;# 0 and grad P, T U (—T). Let C be an open cone
in R” — I containing both normal directions at some such point, and intersecting
each normal plane of every manifold contained in {£ ER"; P(£)=0}. If
u€ ¥ NLL(R"-T) and the support of P(—id/3x)u is contained in I, then
the condition

_liﬂR_lf lu(x)fdx =0, Ce={x€C; R<|x|<2R}
= R

implies that the support of u is contained in I

1. Introduction
Let us consider the equation
(1.1) P(x, —id/dx)u =0 in )

where ) is an unbounded domain in R". When () is the exterior of a compact set,
Rellich [10] proved that a solution of the equation Au + u = 0 in (0 must vanish
identically if u(x)|x|"""?—0 as x — . Extensions of this result have been
given for large classes of operators (see {1,2], [4], [5), [7], [8,9), [14]). In
particular, Hormander [4] and Murata (8, 9] independently completed the study
of the constant coefficients case. When the boundary of €} extends to infinity,
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however, results which have been published are incomplete. Konno [6] gave
lower bounds for solutions of Schrédinger-type equations when (1 is the exterior
of an elliptic paraboloid. Agmon [1} treated the Schrodinger-type equations in
the case that () contains a half space and the potential satisfies proper conditions
which are not fulfilled by a constant function. Shibata [12] considered partial
differential equations with constant coefficients in a half space, and gave lower
bounds for their solutions which satisfy suitable zero boundary conditions on the
whole boundary. As for Schridinger-type equations in a domain which is
contained in a half space, related results were given for solutions with Dirichlet
zero conditions (see, [1], [10], [13]).

Our aim in this paper is to give lower bounds for solutions of (1.1) when Q is
the exterior of a closed convex proper cone and P is a differential operator with
constant coefficients. Our results can be applied to the reduced wave equation,
and are new even in this case.

Now, we explain notations in order to state the results. R” denotes n-
dimensional Euclidean space and points of R" are written as x = (x,,"* -, x,).
For differentiation we use the symbol D = —i(3/dx:,- -+, d/dx,). For the real
dual space of R™ we use the same notation R" and their points are written as
E=1(¢,"-,&). C" denotes n-dimensional unitary space and points of C” are
written as { = ({1, -, ¢) (§ €EC) or € +in with £ n €R" In this way C" is
regarded as the cartesian product of two copies of R". When A, BCR", A +iB
isthe set of all { = ¢ + in with £ € A, n € B. For any subset A of R", we denote
by — A theset {x ER"; ~x € A}. Let I be a closed convex proper cone with its
vertex at the origin, I'" be its dual cone, that is, I' = {¢ ER"; x - ¢ >0 for any
x €T\{0}}, and T, =y +T forany y € R". Then we have the following theorem.

Tueorem 1. Let T be a closed convex proper cone in R" with its vertex at the
origin and P({)= Q()IF-, (P ({))™, where Q({) is a polynomial with complex
coefficients such that Q({)#0 forany {ER"—il" and P,({)  =1,---,p) are
irreducible polynomials with real coefficients. Set

A ={{€R"—il"; P({)=0,grad P ({) #0} = U A],

B, ={{ €R"; P;(£)=0, grad P;(£) #0,grad P;(¢§) €T U (-T)}

where A} is a connected component of A,. Assume that the closure A* of each A
intersects B;. Let 'y be a point in R". Let C be an open cone in R" — I, such that (i)
for some £ € A*N B, C D +grad P, (£"); (ii) for every real analytic manifold
M C{£ €R"; P(¢)=0} and £°€ M, C contains some normal of M at £°. Set

Ce={x€C; R <|x|<2R}.

If u e ¥ N LL(R" —T,) satisfies the conditions
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1.2) P(D)u=f suppfCT,,
(13) ng”J.]uQHWx=Q

then suppu CT,.

The remainder of this paper is organized as follows. In section 2 the proof of
Theorem 1 is given. In section 3 we examine the assumptions on the geometry of
P({) and give some examples. Moreover, we state that Theorem 1 can be
generalized to more general equations (P(D)+ 2%, q;(x)Q;(D))u = f.

2. Proof of Theorem 1

First, we arrange some results which are used to prove Theorem 1. The
following proposition is derived immediately from the edge-of-wedge theorem
(see [11, theorem B] and [15, section 27]).

ProposiTiON 2.1. Let S be an open cone in R" and V be the intersection of S
with some bounded open ball with center at the origin of R". Let E be a non-empty
open set in R". Set

W=E+iV.
If f is holomorphic in W, and

tim [ (6 + imp(€)dg =0
neEV
for every infinitely differentiable function ¢ with compact support in E, it follows

that f =0.

The following are well-known results of functions that are holomorphic in a
tubular domain (see {15, section 25]). Let g(¢ + in) be holomorphic in a tubular
domain R" —iI". We shall use the term spectral function of the function
g(£ + in) to denote the distribution f € @' possessing the following properties:

(a) f(x)e* "€ forallne -T,
(b) g(& + in) = the Fourier transform of f(x)e* ™
= f e T f(x ) dx forall ¢ +impeR" ~il".
Here, the function g(¢ + in) will be called the Fourier—Laplace transform of the

spectral function f(x), and be denoted by f(£ + in). We shall call a cone S a
compact subcone of I'" if the intersection of § and the unit ball is contained in I"".
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ProrosiTiON 2.2. (1) For the support of f € #'(R") to be contained in T, it is
necessary and sufficient that f(¢ + in) is holomorphic in R" — iT” and that for any
compact subcone C of T'' there exist positive constants a, 8 and M (C) such that a
and B are independent of C and

@) [fE+m)IsMO)A+[E+in])(1+[n[?), &+in€R"-iC
2) Iff(¢ + in) is holomorphic in R" — iT" and satisfies (2.1), then there exists in

&' a unique boundary value
f&) = lim f¢+in)e¥,
nE-~T

that is independent of the sequence n —0 for n € —I", and the spectral function
f(x) of f(£ + in) is equal to the inverse Fourier transform of f(£).

The following is the well-known inequality due to Malgrange (see (3], [15]).

ProrosiTiON 2.3. Let U be an open set in C", F({) a holomorphic function in
U, and P({) a polynomial of degree = m. Let W({) be a non-negative integrable
function with compact support contained in U, depending only on |{,],---,| (..
Then

@2 [FOPYO) [ 16 1%@)dt = Mao [ IFOPOI¥@)L,

where d{ is the Lebesgue measure in C" and M, ., is a positive constant depending
only on m and |a|.

Now, let us prove Theorem 1. We may assume that y =0. Under the
assumptions of Theorem 1, we shall show that f(¢)/P({) is holomorphic in
R" —iT". Without loss of generality, we may assume that '3 (x,,0,---,0)
(x,>0) and 9P;/3¢.(¢*)#0. Hence ¢* is the point in AN B, with
=grad P;(¢') € C. By the implicit function theorem, the root of P, near £* is of
the form

L=s(), {=&+in'€Q

where s is a holomorphic function in an open set Q C C™™*, s(¢') is real valued for
EEQNR, £ =(¢"), s((¢*))) and grad P,(¢*) is proportional to
(grad s((¢")), —1) €T U(-T). By Taylor expansion, we have Ims(¢’'+ in’) =
s'(€")- '+ O(In'["), where s' = grads. Since (n',s'(¢')- n') is proportional to
the tangent plane of {(¢,s5(£),&€QNR'} at  (¢,s(¢) and
(s'((£")), —1) T U(—T), there exist a small compact subcone S of {n'€E
R*75(n',s'((¢"))-n')€ — T}, a small open ball B with center at the origin of
R"”, and a neighborhood E of (¢*) such that the set {(£&'+ in, s(&'+ in"));
¢’ €E, n'€V=SNB}is contained in R" — il"". We shall show
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@3) limy [ (@106, YT(€ + in', (€ + in ) (€)de' =0
7'EV
for any ¢(¢)E CG(E) and 0= v=m, — 1. If we show (2.3), it follows from
Proposition 2.1 that f vanishes of order m; at {(¢'+in’, s(£'+in')), ¢ +in’'€
E +iV}. This and the assumption that AFN B, D &* imply that f/(P)™ is
holomorphic in R" —iI” (see [15, lemma 8.4]). We now repeat the argument,
letting f/(P,)™ and P; take the place of f and P;, respectively. Clearly this
argument can be repeated any number of times. So we have that f/P is
holomorphic in R — il
Let us show (2.3). For any ¢ € C5(E) and o' € V U{0}, we set

Dy(x)= [ e ), B(x) = Bute),
Choose a small open conic neighborhood I" of I' — {0} such that

El [x; + x.05/3& (£ + in")]? #0, xel, ¢+in’'€ E+i(VUio).

Putting

L=3 (2 %+ x:35/98 (€' + in ’)l2> (%, + %3536 (6 + ) (— i0/0¢),

we have for any non-negative integer k

(L )ke —H(E +in e x, s(E'+in ) e —i{(¢'+in ')x'*x,.s(§'+i11'))'

Denoting by L** the adjoint of L*, we have that there exists a positive constant
M such that

L e =MIx|* 3 Do), mEVU) xelreliix|z1)
So noting that [exp[—i{(¢'+in")x'+ x.s(&'+in)}]/=1 for x €l and

&'+in’'€ E +i(V U{0}), we obtain by partial integration that ®,.(x) is rapidly
decreasing in I" and that for any multi-index a and positive integer k

.4 tim { sup (14 x|DE®, ()~ @)} = 0.

Since suppf(x)CT and f(x)E &', we have by (2.4) that

@) tim [ (- a1agy(e + in',s (€ + i Db()de

n'ev

= lim {(ix,)"f (x), @ (x ) = (i) "f (x), P(x))-

n'eV
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On the other hand, choosing E close to £ and p € C5(R') such that p =1ina
neighborhood of 0, we set

Iz (x) = (ix,)" ®(x)p(x/R),
8= (€)= ¢ (IR (8106, ) F '[pD(R(& — s(£),
where F '[p] = @7) " [ exp{ix.£. }p(x. )dx.. We have that the Fourier transform

of gr (£) is Ix (x) and that Ir (x) converges to (ix,) " ®(x) in the sense similar to
(2.4). Since f€ &’ and suppf CT, it follows that

(2.6) lim (f(€), gr (£)) = lim (f(x), In (x)) = {(ix.)'f (), D(x)).

Since f = P(D)u and u satisfies (1.3), we obtain

@7) lim ((£), g« (€)= 0

(see [4, proof of theorem 3.1]). The desired equality (2.3) now follows from (2.5),
(2.6) and (2.7).

Let K be a compact subcone of —I"" and ¥ be a multi-index such that P®(¢) is
a non-zero constant. Since the intersection of K and the unit ball is contained in
—1I", we can choose § >0 so that £+ in + D(8|n|)CR" —iI” for any 5 € K,
where D(8|n|)={(€C"; |{]|=8|n], j=1,---,n}. Let ¥() be a non-
negative integrable function with compact support in D(8|7|) and f¥({)d{ =
1, depending only on |, -+, | |. It follows from Propositions 2.2 and 2.3 that
there exist positive constants «, 8 and M (K) such that «, 8 are independent of
K and

176 + imyPGE + i)l [ 187 19@)E = Mgy [ 1€ +in + O1¥ (@2

sMEK)A+[e+in )P +]n]™), £+in R +iK.
On the other hand, we have for some ¢ with 0<e <8

[ 1@ = (_lgj,igf,n, I l) [ v =iy

So we obtain with another constant M(K) depending only on K that

|F& + m)/P(¢ + im)] < M(K)(A+] €+ in |} (1+|m [+
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for any £ + in € R™ + iK. In virtue of Proposition 2.2, it follows from this and the
convexity of I' that there exists a tempered distribution g such that suppg CT
and §(£) = limy—gne-r f(& + in)/P(£ + in).

Summing up, we have proved

THEOREM 2.4. Let I' be a closed convex proper cone and P satisfies the
hypotheses of Theorem 1. Assume that the open cone C in R" —T', has the
properties (i) in Theorem 1. Let u€ ¥ NLL.(R"-T,) and assume that
supp P(D)u CT,. If

lim R [ juGofds =0,
R Cr

then it follows that P(D)v = P(D)u for some v € ¥ with suppv CT,.

In virtue of the theorem due to Hormander [4, theorem 2.4], Theorem 1
follows from Theorem 2.4 and the fact that I is a proper cone in R

3. Remarks. Examples

We first examine the assumptions of Theorem 1. The following two theorems
can be proved in the same way as in the theorems due to Hormander [4,
theorems 3.4 and 3.6].

THEOREM 3.1. Let I' be a closed convex proper cone. Assume that P has an
irreducible factor p with {{ € R" — il""; p(¢) = 0} # & which is not proportional to a
real polynomial or has no simple real zeros. For any integer N one can then find
uE€L"NC” so that supp P(D)u CT and u(x)=o(|x|™) but suppugT.

THEOREM 3.2. Let I' be the interior of a closed convex proper semi-algebraic
cone and p be an irreducible real polynomial with {{ ER" —il""; p({) =0} # .
Assume that there is no real £ with p(¢) = 0 and grad p(§) # 0 such that grad p(¢)
and —grad p(£) are both in R" —T. Then one can find u € ¥' N C~ for every
integer N such that suppp(D)u CT and’ u(x)=o(|x|™) in R*-T bur
suppug I'.

The following theorem, which is well-known (see [4], [8,9]), says that the
estimate (1.3) of Theorem 1 is best possible.

THEOREM 3.3. Assume that the set B; given in Theorem 1 is non-empty. Let C
be an open cone in R" such that it contains grad P;(¢) or — grad P;(¢) for some
£ € B, Then there exists a C”-function u such that P(D)u =0 in R" and
limg—. R fc, [u(x)’dx >0, Ck ={x €C; R <|x|<2R}.

The following example shows that it is necessary to assume that A*NB#AD.
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ExamprLE 3.4. Let P(D)=(-A+1-D, and T'={x €R"; -x,=|x'|}
where x’ = (x,,* -+, x.—1). Then for every integer N one can find u € ¥'NC~
such that supp P(D)u CT and u(x)=o(|x|[™)in R" ~T but suppug I'. To see
this, we note that —I"={n €R"; n. >|n’|, n =(n', n.)} and that

)= (3, 6+1-VE)(3 41+ VE) PP, rER-iT,

where P;({) (j=1,2) are holomorphic in R"—il". We can find ¢° in
{ ER" —iI"; Py(Z) = 0}. Choose f € ¥ so that supp f C T and f(£°) # 0, and set

i) = fOUEF+1+VE IO, ¢ER”
Then the inverse Fourier transform of #(¢) satisfies the assertion, since
ENEF+1+ V&, +i0)"isan N-times continuously differential function in R".
Next we give two examples in order to illustrate the scope of Theorem 1.

ExampLE 3.5. Let P(D)=3/.,D}—-1 and I be any closed proper convex
cone with its vertex at the origin. Then we shall show that all assumptions in
Theorem 1 concerning P and I' are satisfied. Let £°+ in® € R" — il satisfy the
equation P(¢°+ in°)=0. Put

y(t) = V1+t|n°F- £/ €+ im°.

Then we see that y(t)E{{ER"—il"; P()=0}. Since ¢°-9°=0,
E°EZTU(-T). So we have P(£%¢£°)=0 and grad P(¢°/]€°))=
2£°/|€°| €T U (—T). This completes the proof.

ExampLE 3.6. Let P(D)= D3}-%/_,D; and T be any closed proper convex
cone with its vertex at the origin. Then we assert that all assumptions in Theorem
1 concerning P and I' are satisfied. When n = 2, this assertion follows easily.
Assume that n=3. Let C be a light cone, that is, C={np €R"; 51>
n3+---+ 73} It follows from the hyperbolicity of P(¢) that P({)#0 when
{ €R" +iC. Thus the assertion follows easily when —TI'C C. Assume that
—I"Z C. Let £+ in° €R" + i{(— ")~ C} satisfy the equation P(£°+ in°)=0.
Without loss of generality we may assume that £9>0. It follows from the
homogeneity of P(¢) that P(££°+ ien®) = 0 for any positive . Denote by T(en°)
the plane in R" which is perpendicular to (eni, — £n3,- - -, — en?) through the
origin. Then the intersection I(¢n°) of T(en°) and the hypersurface

{EER &&= E=(en))~(em3)’— -~ (en?)}
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is not empty. In fact, it is easily seen that e£° € I(en"). Therefore, let us denote
by S(en°) the connected component of I(en°) which contains the point ££°.

On the other hand, since en’€ (-T")— C and n 2 3, there exists a point
£'€T(e£’) such that &1>0 and P(¢')=0. Note that grad P(¢')=
261, — &3, 1, —£a). Since (&), = &30, — £ (em, emd, -, en%)=0 and
en"€ — I, we have grad P(¢') € ' U(—T). Without loss of generality, we may
assume that the root of P is of the form

gl:s(gl)v €,=(§27"'3£n)

in a small complex neighborhood U of £', where s is a holomorphic function in
an open set Q C C"™', s(¢’) is real valued for &' € QNR"', ¢' = (¢4, s((¢'))), and
(£1, — &2,+ -+, — £,) is proportional to (— 1, grad s((¢')')). By Taylor expansion,
we have

Ims(¢'+in’)=grads(¢')- 7'+ O(|n'[")
for small |n'|. Thus we can find ¢’ € R""' such that
E+ie(n’yYeQ, Ims('+ie(n°))=¢en’
for a sufficiently small number . This means that
(s(¢'+ie(n°)), &' +ie(n°y)€ U N S(en’) X i{en’}.

So there exists a path y(t) (¢t €[0,1]) such that y(1)E{{ ER" —il"; P({) =0},
y(0)=¢' and y(1) = e£"+ ien’.

Finally, we state that Theorem 1 can be generalized to more general equations
(P(D)+ 2L, q,(x)Q;(D))u = f, where |g;(x)| = Me " for some M and a >0,
and sup;ert-ir| Q; (f)l (Ziaizo] P(“)(g)’z)_m <,

THEOREM 2. Let I" be a convex proper closed cone in R" with its vertex at the
origin and P({)= Q(O- (P, ()™, where Q(() is a polynomial with complex
coefficients such that Q({)#0 for any R"—il” and P;({) are irreducible
polynomials with real coefficients. Let G; be a non-empty set such that

G; C{ ER"; Pi(§)=0, grad P;(§) # 0, grad P; (§) Er U (- D)}

Assume that forany j =1,- -+, p and r >0 there exist constants a, (k =0,---,1)
such that (i) a,=0, a>r, 0<ai—a<a (k=1,---,1); (i) for any
’e{¢eR —il"; P({)=0,/Im{|<ac} (k =1, -, 1) there exists a continuous
path y(t) (t €[0,1]) with y(0)=¢°, y(1) € G, and

y({)E{L ER"—il";|Im{|<a, P,({)=0,grad P,({) #0}, 0<t<I.

Let y be a point in R". Let C be an open cone in R" —T, such that (i)



202 M. MURATA AND Y. SHIBATA Israel J. Math.

14
U {*grad P;(£); £ € G} CC; (ii) for every real analytic manifold M C {¢ ER";
j=1
P(¢)=0} and £°€ M, C contains some normal of M at £°. Set
Cr={x€C;R<|x|<2R}

Let u € ¥'N Li.(R"), and for some v

f,,sR |Q,(D)ufrdx =MR*, R>0, j=1,---,N.
Suppose that u is a solution of the equation
6D (PO)+Za®OM)u=f  supscl,  fEL®),

where |q,(x)|=Me™" and supsenr-ir| O (0)| (Baiso| POQ)PY 2 <o, If
satisfies the condition

(3.2) lim R™ | |u(x)['dx =0,

R—x

then suppu CI',. for some y'.

We leave the proof to the reader (cf. [9, theorem 5]).
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