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LOWER BOUNDS AT INFINITY OF SOLUTIONS 
OF PARTIAL DIFFERENTIAL EQUATIONS 

IN THE EXTERIOR OF A PROPER CONE 

BY 

M I N O R U  M U R A T A  A N D  Y O S H I H I R O  S H I B A T A  

ABSTRACT 

An extension of a classical theorem of Rellich to the  exterior of a closed proper 
convex cone is proved: Let F be a closed convex proper cone in R" and - F' be 
the antipodes of the  dual cone of F. Let P = P(- ia/ax)= 
0(-ia/Ox)lq~=, Pj(-id/,gx)mJ be a partial differential operator  with constant  
coefficients in R", where Q(~ r )~0  on R " - i F '  and Pj is an irreducible 

polynomial with real coefficients. Assume  that the closure of each connected 
component  of the set {~" E R " - i F ' ;  p j ( r ) =  0, grad p j ( r ) ~  0} contains some 
real point on which grad P ~  0 and grad Pj ~ F O ( - F). Let C be an open cone 
in R" - F containing both normal  directions at some such point, and intersecting 
each normal  plane of every manifold contained in {~ E R";  P(~j)=0}. If 
u C ~ '  f3 L ~ ( R "  - F) and the support  of P ( -  ia/ax)u is contained in F, then 
the condition 

lir~ R - '  f ,  - tu(x)12dx=O, C , = { x ~ C ; R < l x p < 2 R  } 
R 

implies that the support  of u is contained in F. 

1. Introduction 

Let us consider the equation 

(1.1) P(x, - ia/ax)u = 0 in II 

where l~ is an unbounded domain in R". When ~ is the exterior of a compact set, 
Rellich [I0] proved that a solution of the equation Au + u = 0 in fl must vanish 
identically if u (x ) l x  It"-l)a--~0 as x--+o0. Extensions of this result have been 
given for large classes of operators (see [1,2], [4], [5], [7], [8,9], [14]). In 
particular, H6rmander [4] and Murata [8, 9] independently completed the study 
of the constant coefficients case. When the boundary of ~ extends to infinity, 
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however ,  results which have  been  publ ished are incomple te .  K o n n o  [6] gave  

lower  bounds  for  solut ions of  Schr6dinger - type  equat ions  when O is the ex te r ior  

of an elliptic paraboloid .  A g m o n  [1] t rea ted  the Schr6d inger - type  equa t ions  in 

the case that  ~ contains  a half  space and the potent ia l  satisfies p r o p e r  condi t ions  

which are not fulfilled by a cons tant  function. Shibata  [12] cons idered  part ial  

differential  equat ions  with cons tant  coefficients in a half space,  and gave  lower  

bounds  for  their  solut ions which satisfy suitable zero bounda ry  condi t ions  on the 

whole  boundary .  As  for  Schr6d inger - type  equat ions  in a domain  which is 

con ta ined  in a half  space,  re la ted  results were  given for  solut ions with Dir ichlet  

zero condi t ions  (see, [1], [10], [13]). 

O u r  a im in this p a p e r  is to give lower bounds  for  solut ions of  (1.1) when O is 

the exter ior  of  a closed convex  p rope r  cone  and P is a differential  o p e r a t o r  with 

constant  coefficients. O u r  results can be appl ied  to the reduced  wave  equat ion ,  

and are new even in this case. 

Now,  we explain nota t ions  in o rder  to s tate  the results. R" deno tes  n-  

d imens ional  Eucl idean  space and points  of  R" are wri t ten as x = (xl," �9 -, x ,) .  

For  different ia t ion we use the symbol  D = - i(cg/cgx~,..., c~/c~x,). For  the real 

dual  space  of R" we use the same nota t ion  R" and their  points  are wri t ten as 

~r = (~j , - -  -, ~,). C" deno tes  n -d imens iona l  uni tary  space  and  points  of  C" are  

writ ten as ( = (st, . .  . , s t , )  (~ E C )  or ~ + irl with sc, r l E R " .  In this way C" is 

r ega rded  as the car tes ian p roduc t  of two copies of R". When  A,  B C R", A + iB 

is the set of all ~" = s c + it/ with ~ E A, r/ @ B. For  any subset  A of R", we deno te  

by - A the set {x E R" ; - x E A }. Let  F be  a closed convex p rope r  cone  with its 

ver tex at the origin, F '  be its dual  cone,  that  is, F '  = {~ E R" ; x - s c > 0 for  any 

x E F/{0}}, and [ ' y  ----- y + F for any y E R". Then  we have  the following theorem.  

THEOREM 1. Let F be a closed convex proper cone in R" with its vertex at the 

origin and P ( ~ ' ) =  O(~')l-l~'=~ (Pj (~'))"J, where O ( ( )  is a polynomial with complex 

coefficients such that 0 ( ( )  ~ 0 for any ~ ~ R" - iF' and P~ (~) (j = 1 , . . .  ,p  ) are 

irreducible polynomials with real coefficients. Set 

A t = { ~ ' E R " - i F ' ; P , ( ~ ' ) = 0 , g r a d P j ( s r ) ~ 0 } =  U A~, 
k 

Bj = {s ~ E R" ; Pj (s c) = 0, grad Pj (s c) ~ 0, grad Pj (s c) ~ F U ( - F)} 

where A ~ is a connected component of Aj. Assume that the closure A T of each A ~ 

intersects Bj. Let y be a point in R". Let C be an open cone in R" - F r such that (i) 

for some ~ jk E A ~ A Bj, C ~ -+gradPi(~Jk);  (ii) for every real analytic manifold 

M C {~ ~ R" ; P ( s  c) = 0} and ~o E M, C contains some normal of M at ~o. Set 

c~ ={xeC;R <fxI<2R}. 

I f  u E 5e' (q L ,Zoo(R" - F r ) satisfies the conditions 
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(1.2) 

(1.3) 

then supp u C Fy. 

P ( D ) u  = f, supp f C r , ,  

lim R-1 fc lu(x)l~dx =0, 
R ~  R 

The remainder of this paper is organized as follows. In section 2 the proof of 

Theorem 1 is given. In section 3 we examine the assumptions on the geometry of 

P(~') and give some examples. Moreover,  we state that Theorem 1 can be 
generalized to more general equations ( P ( D ) +  E~I qj(x)Qj(D))u  = f. 

2. Proof of Theorem I 

First, we arrange some results which are used to prove Theorem 1. The 

following proposition is derived immediately from the edge-of-wedge theorem 
(see [11, theorem B] and [15, section 27]). 

PROPOSITION 2.1. Let S be an open cone in R" and V be the intersection of S 
with some bounded open ball with center at the origin of R". Let E be a non-empty 
open set in R". Set 

W = E + i V .  

If f is holomorphic in W, and 

lim f f(~ + i*l)ck(~)d~ = 0 
"0~0 J~ 
~EV 

for every infinitely differentiable function dp with compact support in E, it follows 
that f =- O. 

The following are well-known results of functions that are holomorphic in a 

tubular domain (see [15, section 25]). Let g(s r + iT/) be holomorphic in a tubular 
domain R " - i F ' .  We shall use the term spectral function of the function 
g(s ~ + it/) to denote the distribution f E 9 '  possessing the following properties: 

(a) 

(b) 

f (x  )e~ " ~ 6t' for all rl ~ - F', 

g(~ + i~7 ) = the Fourier transform of f (x  )e x ~ 

= f e-"~+'~)Xf(x)dx for all s c + i~ E R" - iF'. 
J 

Here,  the function g (s c + it/) will be called the Fourier-Laplace transform of the 

spectral function f (x) ,  and be denoted by f(s  c + it/). We shall call a cone S a 
compact subcone of F' if the intersection of ,~ and the unit ball is contained in F'. 
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PROPOSITION 2.2. (1) For the support o f f  ~ ~e'(R n) to be contained in F, it is 
necessary and sufficient that f (  ~ + irl ) is holomorphic in R ~ - iF' and that for any 
compact subcone C of F' there exist positive constants a, fl and M ( C )  such that a 
and [3 are independent of C and 

(2.1) I t ( ~ + i r l ) l < = M ( C ) ( l + l ~ + i r l l ' ) ( l + l r l l - ~ ) ,  ~ + b q E R n - i C .  

(2) If  f(~ + i'o ) is holomorphic in R" - iF' and satisfies (2.1), then there exists in 
6e' a unique boundary value 

[(~:) = lim f(~: + ir I) E b"', 
r l ~ 0  

that is independent of the sequence *1 --~ 0 for 77 E - F', and the spectral function 
f(x) of [(~ + in) is equal to the inverse Fourier transform of t(~).  

The following is the well-known inequality due to Malgrange (see [3], [15]). 

PROPOSITION 2.3. Let U be an open set in C n, F ( ( )  a holomorphic function in 
U, and P(~) a polynomial of degree <= m. Let ~ (~ )  be a non-negative integrable 
function with compact support contained in U, depending only on I ~, ] , ' " ,  ] ~'. ]. 
Then 

(2.2) ]F(0)Pt~'(0)] f I t  '~ ]*(~')d~" _<- Mm.,,,, f I F ( t  )P(t)lxIr(t)dr 

where d~ is the Lebesgue measure in C" and M~,.~ol is a positive constant depending 
only on m and l a I. 

Now, let us prove Theorem 1. We may assume that y =0 .  Under  the 
assumptions of Theorem 1, we shall show that [(~)/P(~) is holomorphic in 
R ' - i F ' .  Without loss of generality, we may assume that F ~ ( x , , O , . - . , O )  
( x , > 0 )  and c)Pj/c)~,(r Hence ~:SE is the point in A-~f3Br with 
-4- grad Pj (~:J~) E C. By the implicit function theorem, the root of P, near ~:ik is of 

the form 

st, = s(~"), ~r' = ~:'+ it/' @ f~ 

where s is a holomorphic function in an open set 1"~ C C "-~, s(~:') is real valued for 
~ : ' E ~ f q R "  ', ~csk=((~:J~),, s((~ik),)) and gradPi(~ ik) is proportional to 
(grad s((~:Jk)'), - 1) ~ F t3 ( -  F). By Taylor expansion, we have Im s (~ '+  i'0 ') = 
s '(~').  7/'+ O(I 7/'12), where s' = grad s. Since (r I', s'(~').  71 ') is proportional to 
the tangent plane of {(~', s (~')), ~:'~ f~ (q R ~-'} at (s c', s (~:')) and 
(s'((sc'~)'),- 1 ) ~ F O ( - F ) ,  there exist a small compact subcone S of {~/'~ 
R~-t; (rl', s'((~'~)')" r / ' )~  -F '} ,  a small open ball B with center at the origin of 

n - I  R , and a neighborhood E of (~:J~)' such that the set {(~'+irl, s(~'+i~7')); 
~:'~ E, r / ' ~  V = S ~ B} is contained in R ~ -  iF'. We shall show 
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(2.3) ,lim'~o fE (0/0~")~f(~' + iv/', s (~ '+  iv/'))~b(~:')ds c '=  0 
~'~V 

for any ,;b(~')E C~,(E) and 0 =< v =< m j -  1. If we show (2.3), it follows from 
Proposition 2.1 that f vanishes of order mj at {(so'+ iv/', s(sr iv/')); ~r iv/'E 
E + iV}. This and the assumption that A--~NB i B ~i,, imply that f/(Pj)", is 
holomorphic in R " - i F '  (see [15, lemma 8.4]). We now repeat the argument, 
letting f/(Pi)"' and Pj, take the place of f and Pi, respectively. Clearly this 
argument can be repeated any number of times. So we have that f /P  is 
holomorphic in R " - i F ' .  

Let us show (2.3). For any 4) E CS(E) and 7/' E V tO {0}, we set 

�9 ,.(x) = f e-'"v*'"'~'+~-"e'+"'~(U)dU, ~ (x )  = ~o(x). 

Choose a small open conic neighborhood f" of F-{0}  such that 

n - - I  

~[xj+x.,gs/,9~j(C+iv/')l~O, x~f', ~'+iv/'EE+i(VU{O}). 
/ = 1  

Putting 

n-I \*~1 XnOS/O~ I (~t iT] ) -I L =  Y~ ( ix,+ + ')1 ~ (x, + x.,gs/a~,(~'+ iv/ ) ) ( -  iO / O~j ), 
j = l  I = 1  

we have for any non-negative integer k 

(L)ke -i{w+i.,)x,§176 = e -i{r 

Denoting by L *k the adjoint of L k, we have that there exists a positive constant 
M such that 

IL*%k(,~')I<=M[xl -k ~' ID~.cb(~')l, 
pc, l<=k 

V/'EVU{0},  x ~ . { x ~ . F ; I x l ~ l  }. 

So noting that lexp[-i{(~'+iv/ ' )x '+x.s(~'+iv/ ' )}]l<=l for x Ef" and 
~'+ iv/'E E + i (V  U {0}), we obtain by partial integration that cP,,(x) is rapidly 
decreasing in I" and that for any multi-index a and positive integer k 

(2.4) lim { sup 
n ' ~ O  x ~FU{Ix]_-<l} 
T ? ' ~ V  

I(1 + Ix I )kD :(dO,,,(x ) - qb(x))l} = 0. 

Since suppf (x )C  F and f ( x ) E  5P, we have by (2.4)that 

(2.5) ~lim'~o f ( -  0/0~r")vf(sr + iv/', s (so' + iv/'))~ (sC')d~ ' 
~'/'E V ' 

= lim ((ix,)7(x ), dO,v(x)) = ((ix,)~f(x), ~(x)). 
,q'~v 
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On the other hand, choosing E close to ~cik and p E Co(R ]) such that p = 1 in a 
neighborhood of O, we set 

I .  (x ) = (ix.)"~,(x ) o ( x / R  ), 

gR (~) = 4, (~ ')R "+'((a/0so. ) ~ - ' [ p  ]) (R (so. - s (s ~ ')), 

where ~-I [0  ] = (2~-) -I fexp{ix,~.}p(x,)dx,. We have that the Fourier transform 
of gR (~:) is I ,  (x) and that IR (x) converges to (ix,)"Cb(x) in the sense similar to 
(2.4). Since f E 5 ~' and suppf  C F, it follows that 

(2.6) lim (f(~), gR (~)) = lim if(x), IR (X)) = ((ix, f f ( x ) ,  alP(x)). 

Since f = P(D)u and u satisfies (1.3), we obtain 

(2.7) Jim (t(r  g .  (r = 0 

(see [4, proof of theorem 3.1]). The desired equality (2.3) now follows from (2.5), 
(2.6) and (2.7). 

Let K be a compact subcone of - F' and y be a multi-index such that P(')(~') is 
a non-zero constant. Since the intersection of K and the unit ball is contained in 
- F ' ,  we can choose 6 > 0  so that ~ + iT 1 + D(617 I I ) C R " -  iF'  for any "r/~ K, 
where D ( 6 1 r / I ) = { ~ ' E C " ;  I~'jl_-<61-ql, j = l , - . . , n } .  Let xtt(~') be a non- 
negative integrable function with compact support in D(61r/I ) and f ~(~')d~" = 
1, depending only on I~ r, I, '" ", Is r- I. It follows from Propositions 2.2 and 2.3 that 
there exist positive constants a,/3 and M(K)  such that a,/3 are independent of 
K and 

If(~ + irl)/P(~ + i~7)['/ I ~'~ I*(~')d~ " _-< M,,,,,, f I)~(~: + in + ~)l'I'(~)d~ 

<--M(K)(l+[s ~ + i r l ~ R " + i K .  

On the other hand, we have for some e with 0 <  e < 6 

\ i=l , . . . ,n  

So we obtain with another constant M(K)  depending only on K that 

I](~ + in )/P(~ + in )l<= M(K)(1 +l~: + in I) ~' (1 + I n  I -("§ 
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for any ~: + i-q E R" + iK. In virtue of Proposition 2.2, it follows from this and the 
convexity of F that there exists a tempered distribution g such that supp g C F 
and ~(~) = l im~o~-~,f(~: + irl)/P(~ + irl). 

Summing up, we have proved 

THEOREM 2.4. Let F be a closed convex proper cone and P satisfies the 

hypotheses of  Theorem 1. Assume  that the open cone C in R " - F y  has the 

properties (i) in Theorem 1. Let u E f~'fq L , ~ ( R " - F y )  and assume that 

supp P ( D  )u C Fy. I f  

lim R -~ ~ t u(x)t2dx =0,  

then it follows that P ( D  )v = P ( D  )u for some v E 5 ~' with supp v C Fy. 

In virtue of the theorem due to H6rmander [4, theorem 2.4], Theorem 1 
follows from Theorem 2.4 and the fact that F is a proper cone in R". 

3. Remarks. Examples 

We first examine the assumptions of Theorem 1. The following two theorems 
can be proved in the same way as in the theorems due to H6rmander [4, 
theorems 3.4 and 3.6]. 

THEOREM 3.1. Let F be a closed convex proper cone. Assume  that P has an 

irreducible factorp with {~" E R" - iF'; p(~') = 0} ~ O which is not proportional to a 

real polynomial or has no simple real zeros. For any integer N one can then find 

u ~ L~ A C | so that s u p p P ( D ) u C F  and u(x ) = o(I x I-N) but suppuJ~F.  

THEOREM 3.2. Let F be the interior of a closed convex proper semi-algebraic 

cone and p be an irreducible real polynomial with {~" E R" - iF'; p(~')= 0} ~ ~ .  
Assume  that there is no real ~ with p (~) = 0 and grad p (~) ~ 0 such that grad p (~:) 
and - gradp(~) are both in R" - F. Then one can find u E 6P' N C ~ for every 

integer N such that s u p p p ( D ) u C F  a n d J u ( x ) = o ( I x l  -N) in R " - F  but 

supp u,~ F. 

The following theorem, which is well-known (see [4], [8,9]), says that the 

estimate (1.3) of Theorem 1 is best possible. 

THEOREM 3.3. Assume  that the set Bi given in Theorem 1 is non-empty. Let C 

be an open cone in R n such that it contains grad Pj (~:) or - g r a d  Pj (~) for some 

E B i. Then there exists a C~-function u such that P ( D ) u  = 0  in R" and 

l i rnR~R- lYcR  l u ( x ) r d x  >0 ,  CR ={x E C; R < l x l < 2 R ) .  

The following example shows that it is necessary to assume that A ~ N B~ ~ Q. 
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EXAMPLE 3.4. Let  P ( D ) = ( - A + I ) 2 - D ,  and F = { x E R " ;  -x,>=lx'l} 
where  x '  = (Xl, �9 �9 ", x , -0 .  Then  for  every integer  N one  can find u E ow' Cl C a 

such that  supp P(D)u C F and u (x)  = o ( Ix  I -N) in R" - F but  supp u,ff F. T o  see 

this, we no te  that  - F'  = {77 E R" ; r/, > I r / ' l ,  77 = (77', 7/,)} and that  

el n 

P(f)=(j~= ~2,+l-~v/~)(~= (~+I+X/~)-~P,(~)P2(~), ~ ' E R " - i F ' ,  

where  P/(~') ( / ' = 1 , 2 )  are ho iomorph ic  in R"-iF' .  We can find ~.o in 

{r E R" - iF ' ;  P2(ff) = 0}. Choose  f E O ~ so that  supp [ C F and [(~.o) # 0, and set 

f i ( ~ : ) = s c ~ . f ( ~ ) ( l ~ : 1 2 + l + X / s c , + i 0 )  - ' ,  ~ER". 

Then  the inverse Four ie r  t r ans form of t~(s c) satisfies the assert ion,  since 

~:~(I r 1 2 + 1 + ~/~:, + i0)  -I is an N - t i m e s  cont inuously  differential  funct ion in R". 

Next  we give two examples  in o rder  to i l lustrate the scope of T h e o r e m  1. 

n 2 EXAMPLE 3.5. Let  P(D)-- Y,j-i D j  - 1 and F be any closed p r o p e r  convex  

cone  with its ver tex at the origin. Then  we shall show that  all a ssumpt ions  in 

T h e o r e m  1 concerning P and F are satisfied. Let  r  i r /oE R" - iF '  satisfy the 
equa t ion  p(~:o+ i t /o)= 0. Put 

y(t) = X/1 + t177~ r176 + itTI ~ 

Then  we see that  y(t) E{~'ER"-iF';  p(~r )=0} .  Since ~O. r lO=0,  

~o ~ F U ( -  F). So we have  P(~~ ~:~ I) = 0 and grad r176 = 
2sc~ ~~ I ~ F u ( - F). This comple tes  the proof .  

EXAMPLE 3.6. Let  P(D) = D~- Y,,=2 Dj and F be any closed p rope r  convex 

cone  with its ver tex at the origin. Then  we assert  that  all assumpt ions  in T h e o r e m  

1 concerning P and F are satisfied. When  n = 2, this assert ion follows easily. 

A s s u m e  that  n > 3 .  Let  C be a light cone, that  is, C=(~ E R" ;  r /~>  

r/22+ ' '  "+ r/2}. It follows f rom the hyperhol ic i ty  of P ( r  that  P ( ~ ' ) # 0  when 

s r E R " +  iC. Thus  the assert ion follows easily when - F ' C  C. A s s u m e  that  

- F ' , ~  C. Let  r  i r /0E R .  + i { ( -  F ' ) -  C} satisfy the equat ion  P(sr176 it/~ = 0. 

Wi thout  loss of genera l i ty  we may assume that  ~r It follows f rom the 

h o m o g e n e i t y  of P ( r  that  P(er176 ie7 I 0) = 0 for  any posit ive e. D e n o t e  by T(eT1 o) 
the p lane  in R" which is pe rpend icu la r  to (er/~ - er/~ . . .  , - er/~ through the 

origin. Then  the intersect ion I(erl ~ of T(eT1 ~ and the hypersur face  

{~ E R";  sc~ - s c2 . . . . .  s r = (er/~ 2 - (er/~ 2 . . . . .  (er/~ 2} 
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is not empty.  In fact, it is easily seen that e~j ~ ~ I(er/o). Therefore,  let us denote  
by S(er/~ the connected component  of I(er/~ which contains the point e~ ~ 

On the other  hand, since e r / ~  ( - F ' ) - C  and n _-> 3, there exists a point 
~ : ~ T ( e ~ ~  "~ such that ~ > 0  and P (~1)=0 .  Note that g radP(~: l )=  
2 ( ~ ] , - ~ : ~ , - . . , - ~ 1 ) .  Since ( ~ : I , - ~ : ~ , ' " , - ~ : 1 ) ' ,  (er/O, er /O, . . . ,er /O)__0 and 

er/~ ~ - F', we have grad p(~l)  ~ F U ( -  F). Without  loss of generality, we may 
assume that the root of P is of the form 

~1 = s(C'), ~"= (~': , - - . ,  ~o) 

in a small complex neighborhood U of ~:~, where s is a holomorphic  function in 
an open set f~ C C"- ' ,  s(~') is real valued for sc'~ l-I fq R "-1, ~:1 = (sr s((~1),)), and 
(~r - ~ , . . . ,  - ~,) is proport ional  to ( -  1, grad s((~l)')). By Taylor  expansion, 
we have 

Im s ( ~ ' +  ir/') = grad s (so') �9 r / '+  O(I r/,[2) 

for small Ir/ ' t .  Thus we can find ~ : ' ~ R  "-1 such that 

~' + ie(r/~ E l), Ims(~ '  + ie(r/~ er/~ 

for a sufficiently small number  e. This means that 

(s(~' + ie (r/~ ~ ' +  ie (r/o),)E U A S(er/~ x i{er/~ 

So there exists a path y ( t )  (t E [0, 1]) such that y ( t )  ~ {s r ~ R" - iF ' ;  P(,~) = 0}, 
3'(0) = ~:1 and y(1) = e~~ ier/~ 

Finally, we state that Theorem 1 can be generalized to more general  equations 
+ N (P(D)  Zi=l q, (x)Q, (D))u = f, where I q~ (x)l <= Me-alxP for some M and a > 0, 

and sup,ER"-I," I QJ (sr)l (Zl~l~o I P'~ -1'2 < oo. 

THEOREM 2. Let F be a convex proper closed cone in R" with its vertex at the 
origin and p(~r)= Q(ff)IJ~'=l (p~(r))'-~, where Q ( ( )  is a polynomial with complex 
coefficients such that Q ( ~ ) ~ O  for any R " - i F '  and Pj(()  are irreducible 
polynomials with real coefficients. Let Gj be a non-empty set such that 

Gj C {r ~ R" ; P, (s c) = 0, grad Ps (~) ~ 0, grad Pj (~:) ~ F U ( - F)}. 

Assume that for any j = 1,. �9  p and r > 0 there exist constants ak (k = 0,. �9  l) 

such that (i) a 0 = 0 ,  a , > r ,  0 < a ~ - a k _ l < a  (k = l , . - . , l ) ;  (ii) for any 
s r~ E {~" E R" - iF' ;  Pj (~') = 0, Jim ~1 < ak } (k = 1 , . . . ,  l) there exists a continuous 
path y ( t )  (t E [0, 1]) with y(0) = ~.o, 7 ( 1 ) E  Gj and 

y ( t ) ~ { ~ E R " - i F ' ; l I m ~ t < a ~ ,  Pi (~') = 0, grad Pj (~) g 0}, 0 < t < l .  

Let y be a point in R". Let C be an open cone in R " - F y  such that (i) 
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[,.J { -+ g rad  Pj (~);  s c E (3,.} C C ;  (ii) for every real analytic mani fold  M C {~ E R" ; 
j=, 

P(~:) = 0} and ~o E M, C contains some normal o f  M at ~o. Set 

CR = { x E C ; R  < l x l < 2 R } .  

Let  u E SY' A 2 . for L,or ), and some u 

f I Q j ( D ) u l 2 d x ~ M R  ~, 
xf~R 

R > 0 ,  j = I , . . . , N .  

Suppose that u is a solution of  the equation 

(3.1) (P(D)+~qj(x)Q,(D))u-=f, suppfCry, f~ L~(R"), 
i=I 

where Iqj(x)l<<-Me -~lxl and sup~ , , - , r ,  IQj(~)l(Ep~l~=olP(~)(~)12)-'a<oo. I f  u 

satisfies the condition 

(3.2) lira R -1 f c  lu(x)12dx = 0 ,  
R ~  R 

then s u p p  u C F,,  for some y'. 

W e  leave  the  p ro o f  to the  r e a d e r  (cf. [9, t h e o r e m  5]). 
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